
A Data Language
Thant Tessman

January 17, 2009

Overview
This document describes a data format designed to provide computer application developers a 
convenient, standardized, text-based, human-readable, easy-to-parse means of exchanging data 
between different applications, or between different invocations of a single application. DL’s ap-
proach to the problem is unique in that the format avoids assuming any  application-specific se-
mantic interpretation of the data. Instead, DL limits itself to describing the structure of the data. 
In a sense, DL is a programming language with support for typed data structures, but  without 
support for control structures.



ii



Contents

Introduction 1
.....................................................................................................................Motivation 1

.........................................................................................How DL Compares to XML 1
....................................................................................................Design and Audience 1

Tutorial 3
........................................................................................................Atomic Types 3
.....................................................................................................................Characters 3

........................................................................................................................Numbers 4
........................................................................................................................Symbols 4

.............................................................................................................Structures 5
...........................................................................................................................Strings 5

.....................................................................................................Records and Vectors 5

...........................................................................................................References 6
...................................................................................................Type Constraints 7

...................................................................................................................Vector Type 7
..................................................................................................................Record Type 7

.........................................................................................................Type Declarations 8
..................................................................................................................Enumeration 9
.................................................................................................................The any Type 9

Formal Specification 11
................................................................................................................Tokens 11

.......................................................................................................Escape Sequences 12

.............................................................................................................Grammar 13
....................................................................................................Type Checking 15

.............................................................................................................................Type 18
.................................................................................................The getType Function 18

..........................................................................................The specificType Function 19
........................................................................................The commonType Function 19

.........................................................................................................The isa Function 21

Implementation 22
.................................................................................................Parsing Optimizations 23

iii



...............................................................................................Parsing and References 23
.....................................................................................Transcription and References 24

...............................................................................References as Explicit Structures 24

iv



Introduction
Motivation

DL was originally  conceived of as the next evolutionary step in computer graphics file formats 
for describing 3D geometry and associated scene data. Previous efforts have illuminated a ten-
sion between flexibility and efficiency. For example, geometric vertex position data often—but 
not always—takes the form of homogenous arrays of 3-dimensional coordinates. The question is: 
How can a format allow for the efficient parsing into memory of data structures like vertex ar-
rays without  relying on semantic assumptions to tell us how data is to be formatted?  The answer 
is to allow for type declarations analogous to type declarations in a programming language like 
C. And like C, DL supports a small set of atomic data types, plus a small number of ways to as-
semble the data into larger structures.

DL’s type system differs from C’s in a few ways, but the most important difference is that in DL 
the type declarations are optional. This gives DL the feel of a dynamically-typed scripting lan-
guage when type declarations are unnecessary or inappropriate.

How DL Compares to XML

At a higher level, DL might best be understood by  comparing it to XML (Extensible Markup 
Language) which purports to serve somewhat the same purpose. XML evolved as an almost 
backwards-compatible extension of HTML (HyperText Markup Language). Like DL, XML is 
intended to describe many different kinds of data (packaged as a document), and to allow pro-
grams to modify and validate documents without prior knowledge of their form. 

The problem is that  XML is, at  its core, merely tagged text. To verify the structure of the data 
and to parse numerical (or other) data elements within the text, applications need meta informa-
tion about a document in the form of Document Type Definitions and XML schema. The com-
plex nature of this meta information (along with XML’s generally inconvenient syntax) tends to 
poison the supposed application-neutral advantages of XML. 

Design and Audience

The design of DL attempts to avoid being gratuitously novel. DL is mainly an assemblage of a 
small number of ideas gathered from various programming languages and culled by experience. 
DL’s syntax for identifiers, numbers and strings is lifted directly from the C programming lan-
guage, for example. But it  is the hope that the ability to read and edit  a DL file is not restricted to 
C programmers in particular or programmers in general.

This document is divided into three sections. The first  will informally describe all the elements 
of DL using examples. The second will more formally describe its syntax and type system. The 
third will discuss implementation details and strategies.

1



2



Tutorial 
The purpose of DL is to store and communicate values, organize them into structures, and to 
support optional type declarations. The type declarations make it possible to mechanically verify 
the data is organized as required by the needs of a given application. Type declarations also fa-
cilitate efficient parsing of the data into memory. DL also supports references. These allow one 
part of a data structure to refer to data or type declarations in another part of the data structure, 
effectively sharing that data across the data structure.

Atomic Types
The language supports values of a small, general set of atomic types: character, integer, real, and 
symbol. (Values of these types have a syntax borrowed (with minor qualification) from the 
analogous types in the C programming language.)

Characters

A character is an individual letter, digit, punctuation, space, etc. Characters are written using sin-
gle quotes:

'x'

As in the C programming language, special characters such as tab and newline can be repre-
sented using escape sequences. An escape sequence is a backslash followed by  something speci-
fying the special character. For example, a tab can be specified like so:

'\t'

The single quote itself can be specified like so:

'\''

A complete description of escape sequences can be found in the formal specification.

The character type signature is specified with the keyword:

char

More on how to put type signatures to use later.

3



Numbers

DL distinguishes between numbers of type integer, and numbers of type real. If a number con-
tains a decimal point or an exponent (or both), it is considered a real. If it is otherwise just a 
string of decimal digits, it is an integer.

Exponents are specified using e or E. Here is Avogadro's number:

6.022e23

(A number of type real borrows its syntax from C’s double. But unlike C, DL's integer syntax 
supports neither octal, nor hexadecimal notation.)

DL does not specify  the precision with which numbers are represented. This is entirely 
implementation-dependent. (Typically, DL's integer type is expected to correspond to C's native 
int and a real to float. But an implementation of DL exists now that  uses a fixed-point num-
ber type to represent reals.)

The integer number type signature is specified with the keyword:

int

The real number type signature is specified with the keyword:

real

Symbols

A symbol is a named, globally-unique enumerant. Symbols are like read-only strings that store 
and compare in memory as integers. Lexically, a symbol starts with an octothorpe (#) and is fol-
lowed by a C-style identifier. A C identifier is made up of letters and digits. The first character 
must be a letter. The underscore “_” counts as a letter. Upper and lower case are different.

Symbols are borrowed from the Scheme programming language, but they  bear some resem-
blance to C’s notion of an enumerant. A DL file might use symbols to denote boolean values,  for 
example:

#false
#true

The type signature for symbols is specified with the keyword:

sym

4



Structures
The format also supports two structures to assemble values into larger conglomerations: record, 
and vector. Records are unordered collections of values indexed by  name. Vectors are ordered 
collections of values indexed by  a nonnegative integer. Records and vectors can be arbitrarily 
nested.

(Records are roughly analogous to structures in the C programming language, and vectors are 
roughly analogous to C's arrays. Following the convention in C, the index is an offset from the 
beginning of the vector. That is, an index of zero refers to the first  item in the vector. More on 
indexing later.)

Strings

Vectors have their own specific syntax which is described below. However, for convenience, vec-
tors of characters (i.e. strings) are supported directly with their own C-like double-quote syntax. 
Like characters, strings include support for the translation of backslashed special characters like 
tab (\t) and newline (\n). Also, consecutive strings separated only by whitespace are concate-
nated when parsed to form a single string in memory.

"This is a string."

Records and Vectors

As mentioned, records are collections of values indexed by name. Names borrow their lexical 
form from C’s identifiers (described earlier in the section on symbols). A single DL file corre-
sponds to a single record and is, at the top level, merely  a sequence of named values (i.e. bind-
ings). Example:

pi = 3.14159265
number_of_feet = 2
fortune = "A witty saying proves nothing. --Voltaire"
true_or_false = #true

When read in, this will create a record containing four bindings. A binding consists of three parts: 
a name (implemented as a symbol), a value, and a type constraint. Type constraints will be de-
scribed more fully later. For now, all that’s important to know is that the above example specifies 
no type constraints. The effect is that the type constraints for each of the four bindings default to 
the type signature:

any

5



The following example illustrates the syntax of records and vectors:

colors = {
  red = [1, 0, 0]
  orange = [1, 0.5, 0]
  yellow = [0.9, 0.8, 0.1]
}

This creates a single binding named colors which is a record containing three vectors named red, 
orange, and yellow. Vectors are a sequence of values within a pair of square brackets and sepa-
rated by commas. (It’s not an error if the last element is followed by a comma.) Records are a 
sequence of bindings (name/value pairs) within a pair of curly brackets. Although a single DL 
file itself corresponds to a single record, the curly brackets for this top-level record are omitted 
since they are implied.

References
A value can refer to a previously-bound value by name. More than that, a value can refer to val-
ues within a previously  defined record or vector using a C-like notation. Record bindings are ac-
cessed using dot-member notation, and vectors are indexed using square-bracket notation. Refer-
ences must begin with a dollar sign. Given the previous definition for colors, the following is 
valid:

paint_color = $colors.orange
green_part_of_yellow = $colors.yellow[1]

Bindings are lexically scoped. That is, a reference doesn’t have to refer only  to a binding at the 
top level. It can start with any binding defined in any outer record as long as it precedes the bind-
ing currently being defined. The following associates the binding name president inside the 
info record with the string value "Moe".

info = {
  names = ["Larry", "Curly", "Moe"]
  president = $names[2]
}

This, however, will not work:

info = {
  names = ["Larry", "Curly", "Moe"]
  president = $info.names[2]
}

This because info is the binding currently  being defined. This restriction has the effect of pre-
cluding circular references.

6



It is an error for a set of binding names within a single record to contain duplicates, but if one 
record contains another record, each is allowed to have its own binding of a given name. A refer-
ence is resolved by first looking in the innermost  record that contains the reference, and continu-
ing the search in each subsequently encompassing record.

Type Constraints
Bindings within a record can optionally be typed. In other words, the value bound to a given 
name can be checked for conformance to a specific form. (It is also possible to check an entire 
DL file against an externally-specified type constraint.) As mentioned previously, the type decla-
rations make it possible to mechanically verify the data is organized as required by the needs of a 
given application, as well as facilitate efficient parsing of the data into memory.

The syntax for type constraints is:

name : type = value

As hinted at  previously, DL uses a few keywords for describing basic types: char, int, 
real, sym, and any. Record and vector types can also be described. DL also provides a way to 
describe a type that restricts a value to a specific set of symbols. The last is called an enumera-
tion.

Vector Type

The keywords vec1, vec2, vec3 and so on can be used to specify vectors of fixed size. 
The keyword vec (without the number) is used to specify a vector of unspecified size. A vec, 
vec1, etc. keyword must be followed by the type of the objects to be stored in the vector. For 
example, the following specifies a vector of unspecified length containing length-3 vectors of 
reals:

vec vec3 real

Record Type

A record type declaration specifies that a value must be a record. It also specifies what bindings 
of what types a record must contain. The syntax is:

rec {
  name1 : type1
  name2 : type2
  ...
}

7



A record type only specifies the bindings that must be present. A record is allowed to have more 
bindings than the record type specifies. This means for example that 

rec {} 

will successfully type check against any record. The bindings are not required to be in the same 
order as specified in the record type. These two aspects of records are intended to make it  possi-
ble to extend them in a way that doesn't break them for applications that aren't expecting the ex-
tended versions. It  allows an application to find the bindings it is looking for without the need to 
know about the bindings it isn't looking for.

This is the colors example rewritten with type declarations:

colors = {
  red : vec3 real = [1, 0, 0]
  orange : vec3 real = [1, 0.5, 0]
  yellow : vec3 real = [0.9, 0.8, 0.1]
}

With the above type constraints, the type checker will verify that  the values bound to red, or-
ange, and yellow will be length 3 vectors of reals. (More than that, an implementation of DL 
now has the information it needs to store those values as packed arrays instead of as untyped in-
directions to type-tagged data.)

Note that an integer will successfully type check as a value of type real.

The colors binding can also be written as such:

colors : rec {
  red : vec3 real
  orange : vec3 real
  yellow : vec3 real
} = {
  red = [1, 0, 0]
  orange = [1, 0.5, 0]
  yellow = [0.9, 0.8, 0.1]
}

The type declaration will serve to guarantee that the record bound to colors contains bindings 
named red, orange, and yellow, and that the values bound to them are length-3 vectors con-
taining reals (or integers).

Type Declarations

A type declaration gives a type a name. A type declaration does not introduce a new type. It 
merely provides an alias for a type that would otherwise be described using the various type 

8



keywords. A type declaration is introduced within a record (including the top-level record) using 
the type keyword.  

An example using a record type:

type shape = rec {
  points : vec vec3 real
  normals : vec vec3 real
  size : real
}

my_obj : $shape = {
  points = [[2, 3, 4], [5, 6, 7]]
  normals = [[8, 9, 10], [11, 12, 13]]
  size = 432.1
}

(A real DL file would of course specify many  many more points and normals, along with poly-
gon index information, and so on.) 

Type declarations are lexically scoped in the same manner that  binding names are. They can be 
referenced using the same dot and square-bracket notation, and they share the same namespace. 
Type declarations can be arbitrarily intermixed with binding declarations within a record (as long 
as type declarations occur before they are referenced).

Enumeration

An enumeration is a type that  restricts a value to one of a finite set of symbols. The prototypical 
example of an enumerated type is the boolean:

type bool = enum {#true #false}
true_or_false : $bool = #true

The any Type

The any type is available within DL via the any keyword. If no type is specified at a record 
binding, it defaults to the any type. Consequently, the any keyword is redundant on its own, but 
it is useful within the description of compound types. For example, the type of a vector that 
should be allowed to contain items of any type can be described with:

vec any

And a record that should contain a binding of a given name, say fu, but whose value is other-
wise unspecified can be described with:

rec {fu: any}

9





Formal Specification
Tokens used in the DL grammar are described here using traditional Unix regular expressions. 
Only the tokens that require regular expressions are included in this section. For clarity, literal 
tokens are left as literal tokens in the section that describes the grammar. The regular expressions 
escseq and validchar (not  in bold) are not tokens, but merely  supplementary regular expressions. 
Note also that naturals and reals don’t allow for a leading minus sign because this is imple-
mented as a unary negative operator in the parser.

Tokens
identifier:
 [a-zA-Z_][a-zA-Z0-9_]*

symbol:
 #{identifier}

natural:
 [0-9]+

real:
 (([0-9]+(\.[0-9]+)?)|(\.[0-9]+))(eE][+-]?[0-9]+)

vecN:
 vec{natural}

path:
 ${identifier}((\.{identifier})|(\[{natural}\]))*

escseq:
 \\([abtnvfr\\\"\']|[0-7]{3,3}|(x[0-9a-fA-F]{2,2}))

validchar:
 [^\n\\\"]|{escseq}

char:
 \'({validchar}|\")\'

string:
 \"({validchar}|\')*\"

11



Escape Sequences

 \n newline
 \t tab
 \b backspace
 \r carriage return
 \f form feed
 \a  alert (bell)
 \\ backslash
 \' single quote
 \" double quote
 \ddd octal character number
 \xhh hexadecimal character number

The escape \ddd consists of a backslash followed by  exactly  3 octal digits which are taken to 
specify  the value of the desired character. The escape \xhh consists of a backslash, a literal x and  
exactly two hexadecimal digits taken to specify the value of the desired character.

12



Grammar
Tokens described in the previous section are in italicized bold. Literal tokens are in courier 
bold. Literal tokens used in the grammar include the following set of symbols:

[ ] { } : = , -

The grammar for a regular DL file uses the bindings production as its start symbol and produces 
a record, but a DL type specification against which one would type check a DL file uses bind-
ingtypes as its start symbol and produces a record type. Beyond that, the latter grammar is a 
strict subset of the former.

start:
 bindings

bindings:
 bindings binding
 binding

binding:
 identifier : type = data
 identifier = data
 type identifier = type

elems:
 elems , data
 data

bindingtypes:
 bindingtypes bindingtype
 bindingtype

bindingtype:
 identifier : type

enum:
 enum symbol
 symbol

strings:
 strings string
 string

13



type:
 any

 char

 int

 real

 sym

 vec type
 vecN type
 rec { bindingtypes }
 enum { enum }
 path
 symbol

data:
 char
 natural
 - natural
 real
 - real
 strings
 symbol
 [ ]

 [ elems ]
 [ elems , ]
 { }
 { bindings }
 path

14



Type Checking
Every  record binding includes a type constraint (which, if unspecified, defaults to the any type). 
It is also practical to check an entire DL file against an externally-specified type constraint. This 
type constraint could itself be a text file. Its grammar would be identical to that of a DL file with 
two exceptions. The first is that the grammar's start symbol would be bindingtypes instead of 
bindings. The second is that it wouldn’t  contain any references because there are no bindings to 
which to refer.

Type checking in DL is complicated by the need to check nested types, and by the fact that data 
is allowed to be more specific than the type signature that constrains it.

The task of implementing the DL type system can be divided amongst three functions. The first:

getType (value) ⇒ type 

converts a value to its most specific type signature. The second:

commonType (type, type) ⇒ type 

takes two type signatures and finds the most specific common type. That is, it  combines the two 
type signatures into a new type signature. Any data that will successfully type check against both 
of the originally  supplied type signatures will also successfully  type check against the new type 
signature. The commonType function is needed to deduce a vector's type signature from the 
type signatures of its elements.

The third function:

isa (type, type) ⇒ bool

checks if the first  type is a subtype of the second type. The term subtype is used here in its origi-
nal substitutability sense. That is, any data that successfully type checks against the first type will 
type check against the second, but not necessarily vice versa. An integer is a real, but  a real is 
not an integer.

It is possible to collapse the duties of these three functions into a single function:

isa (value, type) ⇒ bool

which compares a value directly to a type signature. Some applications of DL will no doubt re-
quire nothing beyond this simpler approach. But some applications will want to guarantee not 
only that data matches the type signature explicitly stated at a given binding, but that the type 
signature itself matches the type signature that the application expects. Using the first three func-
tions as the foundation of the type system makes this practical, and is not much more work to 
implement than the fourth function alone.

15



There is one more useful function on types:

specificType (type, type) ⇒ type

This returns a type that  will successfully type check against the two types provided as arguments. 
That is, given types a, b, and c such that:

specificType (a, b) ⇒ c

then it is guaranteed that:

isa (c, a) ⇒ true

and

isa (c, b) ⇒ true

It is possible that there is no overlap  between the types a and b. For example, there is no type that 
is both a character and a record. In such a case, the specificType function will return the special 
type none. (The special none type is not  merely an error code. It is a type in its own right, and is 
described in more detail in the next section.)

The specificType function returns the intersection of two types. The commonType function 
returns the union of two types. Given types a, b, and c such that:

commonType (a, b) ⇒ c

then it is guaranteed that:

isa (a, c) ⇒ true

and

isa (b, c) ⇒ true

There is a useful DL data structure transformation that requires the specificType function. Re-
call the earlier example:

type shape = rec {
  points : vec vec3 real
  normals : vec vec3 real
  size : real
}

my_obj : $shape = {
  points = [[2, 3, 4], [5, 6, 7]]
  normals = [[8, 9, 10], [11, 12, 13]]
  size = 432.1
}

16



The problem with the data in this form is that the information necessary to parse the points and 
normals data directly into the appropriate homogenous arrays is provided in a way that makes it 
difficult for a traditional parser to take advantage of.

What we would like is a utility that took complex hierarchical type constraints and mapped them 
down the data structures to which they apply, effectively  flattening the type constraints. So, for 
example, the previous data structure after flattening would look like:

type shape = rec {
  points : vec vec3 real
  normals : vec vec3 real
  size : real
}

my_obj : $shape = {
  points : vec vec3 real = [[2, 3, 4], [5, 6, 7]]
  normals : vec vec3 real = [[8, 9, 10], [11, 12, 13]]
  size : real = 432.1
}

The type constraints in the $shape record type get  mapped to the corresponding bindings in the 
my_obj record. This is useful because its easy to build a parser that  knows how to parse the 
points and normals data directly into the described homogenous arrays.

A binding lower down in a data structure might already have a type constraint. Consequently,  to 
do its job in the most general way possible, a type flattening function will need to, in effect, ap-
ply more than one type constraint  at a given binding. This is where the specificType function is 
used. It takes two types and returns the type that is effectively the same thing as applying both 
types. (If no such type exists, there is a type error in the data structure anyway. The flatten func-
tion would simply  make the type error explicit by producing a binding with a type constraint of 
none.)

17



Type

Type signatures as data structures almost  exactly mirror their manifestation in the grammar. The 
only significant difference is the addition of a none type. This is the type for which every value 
will fail to type check. It is useless within the DL grammar, but it is an important part of the type 
checking algorithm. 

type:
 any

 none

 char

 int

 real

 enum of symbol ...
 rec of (symbol, type) ...
 vec of type
 vecN of (int, type)

The ellipses signify zero or more occurrences.

The getType Function

character ⇒ char

integer ⇒ int

real ⇒ real

symbol ⇒ enum of symbol

record of (symbol, value) ... ⇒ rec of (symbol, getType (value)) ...

vector of value ... ⇒ 
 set count to the number of elements in the vector
 initialize type to none
 for every value do
  set type to commonType (type, getType (value))

 return vecN of (count, type)

The ellipses indicate zero or more occurrences.  A record’s type has nothing to do with any type 
declarations or type constraints it contains. It is a function of the binding names and values only. 
An empty vector has an element type of none. The none type doesn’t check successfully  against 
any other type, including itself.

18



The commonType Function

Each type rule listed takes precedence over the rules that are listed after it. The underscore is 
used as a place marker for items that are otherwise ignored.

(none, type) ⇒ type
(type, none) ⇒ type

(char, char) ⇒ char
(int, int) ⇒ int
(real, real) ⇒ real

(int, real) ⇒ real
(real, int) ⇒ real

(sym, sym) ⇒ sym

(sym, enum of _) ⇒ sym
(enum of _, sym) ⇒ sym

(enum of a, enum of b) ⇒ enum of the union of the symbol sets a and b

(vec of a, vec of b) ⇒ vec of commonType (a, b)

(vecN of (_, a), vec of b) ⇒ vec of commonType (a, b)
(vec of  a, vecN of (_, b)) ⇒ vec of commonType (a, b)

(vecN of (i, a), vecN of (j, b)) ⇒
 if i=j 
 then return vecN of (i, commonType (a, b))
 else return vec of commonType (a, b)

(rec of a, rec of b) ⇒
 initialize bindingtypes to the empty set
 for every (symbol1, type1) in a do
  for every (symbol2, type2) in b do
   if symbol1=symbol2
   then add (symbol1, commonType (type1, type2)) to bindingtypes
 return rec of bindingtypes

(_, _) ⇒ any

19



The specificType Function

Each type rule listed takes precedence over the rules that are listed after it. The underscore is 
used as a place marker for items that are otherwise ignored. The description provided below of 
how to find the specific types of two record types is merely  meant to be explicit about what 
needs to be done. Other semantically equivalent but more efficient implementations are possible.

(any, type) ⇒ type
(type, any) ⇒ type

(rec of a, rec of b) ⇒
 initialize bindingtypes to the empty set
 for every (symbol1, type1) in a do
  if (symbol2, type2) in b exists such that symbol1=symbol2
  then add (symbol1, specificType (type1, type2)) to bindingtypes
  else add (symbol1, type1) to bindingtypes
 for every (symbol2, type2) in b
  if a binding with symbol2 hasn’t already been added to bindingtypes
  then add (symbol2, type2) to bindingtypes 
 return rec of bindingtypes

(vecN of (i, a), vecN of (j, b)) ⇒
 if i=j 
 then return vecN of (i, specificType (a, b))
 else return none

(vecN of (size, a), vec of b) ⇒ vecN of (size, specificType (a, b))
(vec of  a, vecN of (size, b)) ⇒ vecN of (size, specificType (a, b))

(vec of a, vec of b) ⇒ vec of specificType (a, b)

(enum of a, enum of b) ⇒ enum of the intersection of the symbol sets a and b

(sym, enum of symbol ...) ⇒ enum of symbol ...
(enum of symbol ..., sym) ⇒ enum of symbol …

(sym, sym) ⇒ sym

(int, real) ⇒ int
(real, int) ⇒ int

(char, char) ⇒ char
(int, int) ⇒ int
(real, real) ⇒ real

(_, _) ⇒ none

20



The isa Function

Each type rule listed takes precedence over the rules that are listed after it. The underscore is 
used as a place marker for items that are otherwise ignored.

(_, any) ⇒ true

(char, char) ⇒ true
(int, int) ⇒ true
(int, real) ⇒ true
(real, real) ⇒ true
(sym, sym) ⇒ true
(enum of _, sym) ⇒ true

(enum of a, enum of b) ⇒
 for every symbol in a do
  if symbol is not contained in b
  then return false
 return true

(vec of a, vec of b) ⇒ isa (a, b)
(vecN of (_, a), vec of b) ⇒ isa (a, b)
(vecN of (i, a), vecN of (j, b)) ⇒
 if i≠j
 then return false
 else return isa (a, b)

(rec of a, rec of b) ⇒
 for every (symbol2, type2) in b do
  find (symbol1, type1) in a such that symbol1=symbol2
  if no such binding is found then return false
  if isa (type1, type2) returns false then return false
 return true
  
(_, _) ⇒ return false

21



Implementation
DL was designed not only to be relatively  easy to implement, but to allow for multiple imple-
mentation strategies and application-specific optimizations. The decision, for example, to disal-
low recursive references was made not because it  necessarily  breaks things semantically, but be-
cause it precludes certain optimization strategies. Ditto the decision not to put type declarations 
and bindings in separate namespaces. The grammar makes it possible to do this, but  it is impor-
tant to allow the lexer to resolve a path and return a token based on the type or value that the path 
refers to. The lexer doesn’t know whether it is looking for a type or a value until it finds it.

Anyone who intends to implement DL must be comfortable with the notion of a variant (variant 
record, tagged union, disjoint union, discriminated union, algebraic data type, ...). There is plenty 
of literature available on the topic. (In particular, see the variant library provided at 
http://www.boost.org.) Beyond that, the main decision an implementor needs to make is how 
much work they  wish to put  into leveraging type declarations to efficiently parse data directly 
into application-specific in-memory data structures. This section addresses that issue, but also 
continues with issues that implementors aren’t likely to encounter unless they are really pushing 
on DL.

22

http://www.boost.org
http://www.boost.org


Parsing Optimizations

In the general case, an implementation must support DL values with some manifestation of a 
variant (possibly in the form of a tagged union, or algebraic data type). Unfortunately this can be 
unacceptably inefficient in the case of very large arrays of homogenous data.

A type constraint can provide a parser with the information it needs to parse such data structures 
directly. If a parser sees:

points : vec vec3 real =

it can legally assume that what follows has a grammar that looks like:

start:
 [ vec3rs ]
 [ vec3rs , ]
 path

vec3rs:
 vec3rs , vec3r
 vec3r

vec3r:
 [ item , item , item , ]
 [ item , item , item ]
 path

item:
 int
 real
 path

Parsing and References

The situation is complicated by the fact that  the type constraint or even parts of it might  be speci-
fied using a reference to a type declaration. Also, as the grammar above illustrates, the raw data 
itself is allowed to contain reference paths.

Paths begin with a dollar sign so that the lexer can distinguish them from identifiers. This allows 
(but doesn’t require) a path to be resolved in the lexing stage so that the lexer can return the cor-
responding data element or type token directly. This way, the presence of references doesn’t 
sabotage the attempt to build specific type signatures and data structures directly into the gram-
mar.

In the above example grammar for vec vec3 real, the path tokens can be replaced entirely 
with tokens corresponding to values of the type expected at that point in the grammar.

23



Transcription and References

Much of the utility of DL is derived from the ability to conveniently convert back and forth be-
tween raw text and data that has been massaged into an application-specific form to one degree 
or another. Here too the situation is complicated by  references. Resolving reference paths is rela-
tively straight-forward, and every application that has the ability  to read a DL file should be ex-
pected to deal with a reference everywhere they are legally  allowed to occur. Generating refer-
ence paths when writing a file, on the other hand, is trickier. 

One can imagine (and this writer has built) a utility  that converts back and forth between a DL 
text file and an efficiently-packed, fast-loading binary file. In this case, if one is to avoid the need 
for application-specific knowledge about where references will occur, the desire to efficiently 
pack vectors of reals as arrays of floats conflicts with the goal of preserving references across the 
translation boundary. It can be done, but it unreasonably complicates the implementation. Better 
to restrict  the preservation of references to the references that  point at records and vectors, which 
are likely to be implemented (directly or indirectly) as pointers anyway.

References as Explicit Structures

To generate references when transcribing a raw, in-memory DL data structure, one approach is to 
keep  track of a dictionary of which records and vectors have already been transcribed, along with 
the sequences of binding names and vector indices by which they  can be reached (i.e. the refer-
ence path). Then, before transcribing a new record or vector, first check to see if it has already 
been transcribed, and if so, just use the associated reference path instead.

It can get expensive to compare every (pointer to a) record or vector about to be transcribed with 
every  (pointer to a) previously transcribed record and vector. This is not as bad as keeping track 
of every single value that has been transcribed so far, but it is still not ideal.

Another approach is to introduce an explicit data-reference type as part of the value-variant im-
plementation, and a type-reference type as part of the type-variant implementation. In this ap-
proach, values and types are only  recognized as being shared across the data structure if they are 
shared through these references. This approach requires that the resolution of references be di-
vided into several passes:

1. Parse the data, leaving references unresolved (at least the references you want to preserve).

2. Collect the paths to every value and type referenced from somewhere else.

3. Replace each referenced value and type with actual references to the associated value or type.

4. Resolve the reference paths. These will now resolve not to values or types, but references to 
values or types.

This is several passes, but they are all O(n) instead of O(n2). And at transcription time, only ref-
erences need to be checked against the dictionary.

24


